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An efficient numerical scheme to compute flows past rigid solid bodies moving through
viscous incompressible fluid is presented. Solid obstacles of arbitrary shape are taken into
account using the volume penalization method to impose no-slip boundary condition. The
2D Navier–Stokes equations, written in the vorticity-streamfunction formulation, are dis-
cretized using a Fourier pseudo-spectral scheme. Four different time discretization
schemes of the penalization term are proposed and compared. The originality of the pres-
ent work lies in the implementation of time-dependent penalization, which makes the
above method capable of solving problems where the obstacle follows an arbitrary motion.
Fluid–solid coupling for freely falling bodies is also implemented. The numerical method is
validated for different test cases: the flow past a cylinder, Couette flow between rotating
cylinders, sedimentation of a cylinder and a falling leaf with elliptical shape.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The concept of fluid-structure interaction covers a wide variety of phenomena involving solid boundaries immersed in a
fluid flow. These boundaries may have complex geometrical shape, may move and even deform, as it occurs in numerous
applications, thus resulting in challenging tasks for computational fluid dynamics.

Nowadays, there exists a considerable number of techniques to introduce solid boundaries in a numerical model of the
flow. Among those, immersed boundary and fictitious domain methods are becoming increasingly popular (see, e.g.
[17,16]). The motivation is that for complex fluid-structure interaction problems these methods have a potential to be more
easy-to-implement and more efficient than classical approaches such as body-fitted curvilinear grids. Thus one of the earliest
works is by Peskin who introduced an immersed boundary method to explore flow patterns around heart valves [18]. Glowin-
ski et al. developed a Lagrangian-multiplier-based fictitious domain method and applied it to a wide range of problems [33].
Among the recent publications there are simulations of fish and insect locomotion by Mittal et al. [31], studies of dragonfly
flapping flight by Russell and Wang [19], and applications to particulate flows by Sharma and Patankar [32] and Uhlmann [28].

The common feature of the mentioned methods is that the physical solid boundary does not necessarily conform to the
computational domain boundary. As a consequence, Cartesian grids and efficient numerical schemes can be implemented.

The volume penalization method considered in this paper is based on the idea of modelling solid bodies as porous media
whose permeability tends to zero. The Navier–Stokes/Brinkman model, where the penalization source term in the momentum
equation corresponds to the Darcy drag, was first proposed by Arquis and Caltagirone [1] in the context of the natural con-
vection flow inside a fluid–porous cavity. It was then generalized to study the fluid–porous–solid systems [36]. In addition
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3m.univ-mrs.fr (D. Kolomenskiy), kschneid@cmi.univ-mrs.fr (K. Schneider).

mailto:dkolom@gmail.com
mailto:dkolom@L3m.univ-mrs.fr
mailto:kschneid@cmi.univ-mrs.fr
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


5688 D. Kolomenskiy, K. Schneider / Journal of Computational Physics 228 (2009) 5687–5709
to being physically motivated, this model is mathematically justified, due to the convergence property rigorously proved by
Angot et al. [2]. Recent improvements of this fictitious domain approach include mixed boundary conditions [21] and higher
order accuracy [20].

The volume penalization is an essential component of the present work. It allows such features as arbitrary shape and
number of obstacles. Their motion and interaction with the fluid can be efficiently implemented in a relatively straightfor-
ward manner. Thus it represents a flexible tool for numerical simulation of fluid-structure interaction.

As a starting point we take the numerical scheme developed in [4]. It consists in solving the two-dimensional (2D) incom-
pressible Navier–Stokes equations using a Fourier pseudo-spectral method together with the volume penalization method.
Spectral discretizations are known as efficient tools for modelling of turbulent and transitional flows [6]. Fast Fourier trans-
form software packages are nowadays well-optimized both for single-processor and parallel computations. Therewith, the
numerical method is limited to periodic computational domains, which suggests considering fictitious domain techniques
to simulate bounded flows. This approach was used by various authors to model flows past fixed obstacles, such as flows
past tube bundles [8,9] and flat plates [10], confined turbulence in a circular container [25], and a dipole-wall collision
[22]. In particular, the latter paper addresses the issue of higher order convergence.

The aim of the present paper is to develop further the above model, which consists in the implementation of time-depen-
dent penalization to solve moving obstacle problems. We also explore possible improvements of time-stepping. In addition,
for fluid–solid interaction we introduce coupling with the equations of solid body dynamics. Thus we obtain an instrument
to perform direct numerical simulations (DNS) of a falling leaf, and reveal some features of this phenomenon. This latter
interest is inspired by the beautiful simulations of falling leaves performed by Pesavento and Wang [13].

The paper is organized as follows. In Section 2, we briefly recall the physical model and its space discretization. The reader
is referred to [4] for more details at this point. Section 3 presents a discussion of different time discretization schemes to
treat the penalization term. In Section 4, we describe in detail our approach to time-dependent penalization for moving
obstacles. It is validated by comparing moving and fixed cylinder simulations, and also by performing a convergence test
for Couette flow between rotating cylinders. In Section 5, we present some results for freely falling solid bodies. Finally,
in Section 6, we draw conclusions on the present results and outline perspectives for future work.

2. Physical model and spatial discretization

In this section we recall the equations governing the motion of viscous incompressible fluid, followed by presenting the
volume penalization method. Then, the space discretization of the problem using a Fourier pseudo-spectral method is briefly
described.

2.1. Governing equations

We consider interactions between viscous incompressible fluid and rigid solids moving in it. In this case the fluid motion
is governed by the incompressible Navier–Stokes equations – the momentum equation
@tuþ u � ruþ 1
q
rp� mr2u ¼ f ð1Þ
and the continuity equation
r � u ¼ 0; ð2Þ
with no-slip boundary conditions on the solid walls moving with velocity V@Xs
uj@Xs
¼ V@Xs ð3Þ
and completed with a suitable initial condition.
Let Xf denote the fluid domain, Xs the solid one and X ¼ Xf

S
Xs the entire domain (see Fig. 1). Only two-dimensional

flows are studied in this work. The spatial coordinates in the two-dimensional domain are x ¼ ðx; yÞ 2 X and time is
Fig. 1. The computational domain X contains the fluid domain Xf , the solid obstacle Xs and its boundary @Xs .
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t 2 ½0; tmax�. Note that in general the fluid and the solid domains, the solid boundary @Xs and its velocity V@Xs depend on
time.

The equations are written for dimensionless variables. Units are chosen in order to set the dimensionless density q ¼ 1.
The flow velocity uðx; tÞ and the pressure pðx; tÞ are unknowns, while fðx; tÞ is a source term (such as gravitational force). The
parameter m > 0 is the kinematic viscosity.

The fluid–solid interaction simulations presented in this paper invoke the volume penalization method, originally pro-
posed by Arquis and Caltagirone [1] for the natural convection flow inside a fluid–porous cavity, and then generalized to
study the fluid–porous–solid systems [36]. The method is based on the idea of modelling solid obstacles as porous media.
When the permeability g tends to zero the obstacle tends to be a solid with no-slip boundary conditions on its walls. The
flow is considered in a unified domain in which both fluid and solid domains are imbedded. The difference between them
is the permeability. The momentum equation (1) is modified by adding a penalization term on the velocity:
@tug þ ug � rug þrpg � mr2ug þ
vX

g
ðug � usÞ ¼ f; ð4Þ
where vXðx; tÞ is the mask function describing the geometry of the obstacle
vX ¼
1 for x 2 Xs;

0 for x 2 Xf

(
ð5Þ
and usðx; tÞ is its velocity.
According to Eq. (4), for small g the flow is governed by the Navier–Stokes equations in Xf , and by Darcy’s law in Xs. The

convergence of ug to u in the limit of vanishing g was rigorously proved by Angot et al. [2] for fixed obstacles. The estimates
were then refined by Carbou and Fabrie [34], who demonstrated g1=2 rate of convergence.

The hydrodynamic forces and moment on the obstacle can be computed by integrating the penalized velocity over the
obstacle volume, instead of evaluating surface integrals of the strain rðu; pÞ ¼ 1

2m ðruþ ðruÞtÞ � pI [2,3]:
F ¼
Z
@Xs

rnf dc ¼ lim
g!0

Z
X

vX

g
ðug � usÞdXþ Vc€xc; ð6Þ

Mxc ¼
Z
@Xs

ðx� xcÞ � rnf dc ¼ lim
g!0

Z
X

vX

g
ðx� xcÞ � ðug � usÞdXþ Ic

€hc; ð7Þ
where Vc ¼
R

Xs
dx is the volume of the solid, Ic ¼

R
Xs
ðx� xcÞ2 dx is the geometrical moment of inertia, xc is the center of grav-

ity position vector (we assume the uniform density distribution of the solid), and hc is the angle of rotation with respect to
the center of gravity. Dots denote derivation with respect to time.

In 2D it is worthwhile to introduce the vorticity-streamfunction formulation of the penalized Navier–Stokes equation [4].
We take the curl of (4) to obtain
@txg þ ug � rxg � mr2xg þr�
vX

g
ðug � usÞ

� �
¼ r� f; ð8Þ
where xg ¼ r� ug denotes the vorticity, which is scalar-valued, since only the component perpendicular to the xy-plane is
non-zero in 2D.

The source term f is assumed irrotational and the velocity is determined as a sum ug ¼ r?Wþ U1, with U1 being the
free-stream velocity and W being the stream function, satisfying
r2W ¼ xg; ð9Þ
where r?W ¼ ð�@yW; @xWÞ stands for the orthogonal gradient of the stream function.
The equations (8) and (9) are solved numerically using a Fourier pseudo-spectral technique [6]. In this connection it is

relevant to make a remark that as long as the numerical method implies periodic boundary conditions, the irrotational part
of the velocity has to be constant [5], so it is interpreted as U1 and corresponds to the mean velocity.

2.2. Pseudo-spectral discretization

For the spatial discretization of (8) and (9) we use a classical Fourier pseudo-spectral method on a 2p-periodic domain X
[6]. The vorticity field is transformed into Fourier space in order to compute the spatial derivatives and evolve the vorticity
field in time. The non-linear and penalization terms are calculated in physical space. Following [4], the vorticity field and the
other variables are represented as Fourier series,
xgðx; tÞ ¼
X
k2Z2

bxgðk; tÞeik�x; ð10Þ
with i2 ¼ �1, and where the Fourier transform of xg is defined as
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bxgðk; tÞ ¼
1

4p2

Z
X
xgðx; tÞe�ik�x dX; ð11Þ
with k ¼ ðkx; kyÞ and x 2 ½0;2p�2 (general domains ½0; Lx� � ½0; Ly�may be considered by rescaling). The Fourier discretization is
uniform in space and is truncated at kx ¼ �Nx=2 and kx ¼ Nx=2þ 1; ky ¼ �Ny=2 and ky ¼ Ny=2þ 1, where Nx and Ny are the num-
ber of grid points in x and y direction, respectively. The gradient of xg is computed by multiplication of bxg by ik, the Laplacian
corresponds to multiplication by �jkj2. The velocity u is computed from the vorticity using Biot-Savart’s law in Fourier space,
ugðx; tÞ ¼ �
X

k2Z2 ;k–0

ik?

jkj2
bxgðk; tÞeik�x þU1; ð12Þ
where k? ¼ ð�ky; kxÞ and U1 is the potential part.
To avoid aliasing errors, i.e., the production of small scales due to non-linear terms which are not resolved on the grid, we

dealias the vorticity at each time step by truncating its Fourier coefficients using the 2/3 rule. For the transformation be-
tween physical and Fourier space we use the Fast Fourier transform (FFT) with an order of complexity Nlog2N;N ¼ NxNy [6].

3. Time discretization

In this section first we describe the time integration of (8) using explicit treatment of the non-linear and penalization
terms and exact integration of the diffusion term. We note that along with its simplicity and robustness this approach
has a drawback: the explicit treatment of the penalization term imposes a stability condition Dt < g.

Then we investigate different ways to overcome this limitation. One approach consists in exponential propagation of the
whole linear part of the momentum equations, including the penalization term, and not only of the diffusion term. In this
case exact evaluation of exponential integrating factors is not practical, since diagonalization of the linear operator is no
more straightforward. Hence, we consider various approximations [3,23,24]. Another way is to treat the penalization term
implicitly, as proposed in [22].

In the following we choose four different time schemes, compare their performance when applied to a simplified 1D mod-
el problem, the penalized Burgers equation, and discuss numerous difficulties encountered in their generalization for the
Navier–Stokes equations.

3.1. Adaptive second order Adams–Bashforth scheme

The basic time-stepping implemented in our code is an adaptive second order Adams–Bashforth method (AB2) with exact
integration of the diffusion term and explicit integration of the penalization term [4]. All simulations in the present paper are
performed using this scheme, unless otherwise indicated. It fits well into our general concept of compromise between the
ease of implementation and computational efficiency.

Exact integration of the diffusion term is feasible because the Laplace operator is diagonal in Fourier space and hence no
linear system has to be solved. It improves stability of the scheme, avoiding the stability condition Dt < Dx2=m. The remaining
terms are discretized explicitly to avoid the solution of non-linear equations, however it implies a CFL condition on the time
step size Dt and also a condition due to the explicit discretization of the penalization term Dt < g, as linear stability analysis
shows (see Appendix B).

To simplify notations let us rewrite the Eq. (8) in the form of a non-linear evolution equation
@tx� mr2x ¼ NðxÞ; ð13Þ

where NðxÞ ¼ �u � rx�r� vX

g ðu� usÞ
� �

and we dropped the index g for ease of notation.

Transforming the above into Fourier space we obtain the equation
@t bx þ mjkj2 bx ¼ bNðxÞ: ð14Þ
For the initial condition bxðk; tnÞ, Eq. (14) has the solution
bxðk; tnþ1Þ ¼ e�mDtnþ1 jkj2 bxðk; tnÞ þ
Z tnþ1

tn

e�mðtnþ1�sÞjkj2 bNð bxðk; sÞÞds: ð15Þ
The integral in (15) is discretized using the AB2 scheme with adaptive time steps, thus giving a fully discretized equation
bxðk; tnþ1Þ ¼ e�mDtnþ1 jkj2 bxðk; tnÞ þ b10
bNn þ b11e�mDtn jkj2 bNn�1

� �
; ð16Þ
with bNn ¼ bNð bxðk; tnÞÞ denoting the value of non-linear term at the time instant tn and the Adams–Bashforth coefficients
b10; b11 being given by
b10 ¼
1
2

Dtnþ1

Dtn
ðDtnþ1 þ 2DtnÞ; b11 ¼ �

1
2

Dt2
nþ1

Dtn
; ð17Þ
where Dtn ¼ tn � tn�1. For startup a first order scheme is used.
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The time step size control is based on the CFL stability limit of the explicit discretization of the non-linear term. Therefore,
at each time step tn, the maximal pointwise velocity is computed:
Umax ¼ max
x2Grid

juðx; tnÞj ð18Þ
and the new time step is given by
Dtnþ1 ¼ CDx=Umax; ð19Þ
where C < 1 is the CFL constant (we use C ¼ 0:1) and Dx ¼min Lx
Nx
;

Ly

Ny

� �
is the minimal spatial grid size, with Lx; Ly denoting

the length of the domain and Nx;Ny the number of points in x and y directions, respectively. Moreover, the time step is lim-
ited to verify the condition Dtnþ1 < g.

3.2. Exponential propagation and implicit treatment of the penalization term: application to Burgers equation

As mentioned above the explicit treatment of the penalization term imposes a stability restriction Dt < g. It can be seen
from (16) that when g tends to zero the terms bNn; bNn�1 become unbounded. To overcome this difficulty, several approaches
have been proposed in the literature [3,23,22]. In this section, we briefly discuss them and study them, for the sake of sim-
plicity, for a one-dimensional model problem.

Namely, we consider the viscous Burgers equation
@tuþ u@xu� m@xxu ¼ 0 ð20Þ
for x 2 ½�1;1� and t 2 ½0; tmax�. We impose homogeneous Dirichlet boundary conditions
uð�1; tÞ ¼ uð1; tÞ ¼ 0 ð21Þ
and the initial condition given by
uðx;0Þ ¼ � sinðpxÞ: ð22Þ
To solve the above problem using the volume penalization method, the initial domain is imbedded into a larger domain
x 2 ½�2;2�, in which the penalized solution ug is computed. We add a penalization term vX

g ug to Eq. (20) and obtain
@tug þ ug@xug � m@xxug þ
vX

g
ug ¼ 0; ð23Þ
where the mask function
vX ¼
0 for x 2� � 1;1½
1 for x 2 ½�2;�1�

S
½1;2�

�
ð24Þ
serves to model the Dirichlet conditions (21). Periodic boundary conditions at x ¼ �2 and x ¼ 2 are imposed to enable us
using a Fourier pseudo-spectral method, and the initial condition (22) is extended periodically through the larger domain:
ugðx;0Þ ¼ � sinðpxÞ: ð25Þ
Let us mention that in practice the penalized domain does not need to be twice as large as the initial domain, it is suf-
ficient to cover the high-gradient boundary layer inside the solid obstacle with a few grid points. Here we choose this size
only for illustrative purposes.

For t > 0, g ! 1 the solution of (23)–(25) tends to Cole’s exact solution of (20)–(22) [7] in � � 1;1½ and to zero in
½�2;�1�

S
½1;2�.

Numerical tests presented here are performed for m ¼ 0:01=p, and the solution is computed up to tmax ¼ 1:6037=p. It is
discretized in space using N ¼ 212 Fourier modes.

Since the following discussion is focused on time-stepping, spatial discretization errors are supposed to be sufficiently
small. The equations in the following subsections should be read then in spectral collocation sense, with all the operators
acting in finite-dimensional spaces.

3.2.1. Explicit integration of the penalization term (EIP)
We start with the second order Adams–Bashforth scheme where the penalization term is treated explicitly, as described

in the previous subsection. Fig. 2 shows convergence of the approximate solution of (23)–(25) obtained with this scheme. Its
L1 error versus time step is traced for four values of the penalization parameter: g1 ¼ 1:6037 � 2�7=p; g2 ¼
1:6037 � 2�9=p; g3 ¼ 1:6037 � 2�11=p and g4 ¼ 1:6037 � 2�13=p.

Let us first consider the curve g1. The rightmost point of this curve corresponds to Dt � 0:002, which is smaller than
g1 � 0:004, thus the solution is stable. When Dt is decreasing to 0.001, the error is also decreasing, somewhat slower than
OðDt2Þ. This is not surprising, since higher order truncation error terms are significant with these rather coarse time steps.
These terms vanish for smaller time steps, but the penalization error (the error due to finite g) becomes dominant. It is inde-
pendent of Dt and equals 0:0036.



Fig. 2. Decay of the approximation error. AB2 scheme with explicit treatment of the penalization term (EIP). The L1-error between the exact and approximate
solutions at tmax ¼ 1:6037=p is traced versus time step for a series of penalization parameter values. Vertical bars mark the stability restriction Dt < g.
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Now we consider a smaller value of the penalization parameter, g2 � 0:001. The penalization error decreases down to
0.0016, and it dominates the total error only when Dt < 0:005. For larger time steps the curve has a slope close to 2. However,
large time steps Dt > 0:001 become impossible due to lack of stability.

For even smaller values of the penalization parameter, g3 and g4, the OðDt2Þ part of the curves is absent. In some sense this
means loosing the order of convergence of the temporal discretization. Therefore we can conclude that the explicit integra-
tion of the penalization term is only adequate for moderate values of g and Dt.

3.2.2. Exponential propagation of the penalization term (ExP)
One of the possible ways to overcome the above mentioned difficulty is to note that the penalization term in (23) is linear,

so that we can follow the same steps as in the previous subsection to obtain
ugðx; tnþ1Þ ¼ eDtnþ1Augðx; tnÞ þ
Z tnþ1

tn

eðtnþ1�sÞAQðugðx; sÞÞds; ð26Þ
where A ¼ m@xx � vX
g is the linear operator and Q ¼ �ug@xug is the non-linear term. However in this case, A does not yield a

diagonal matrix in Fourier space, and the evaluation of its exact exponent becomes prohibitive.
Nevertheless it still can be evaluated approximately at a reasonable cost. This idea was exploited in [3], where the follow-

ing approximations were proposed:
etA ¼ F�1etLFe�tP þ Oðt2Þ ð27Þ
or
etA ¼ �I þ F�1etLF þ e�tP þ Oðt2Þ; ð28Þ
where F is the discrete Fourier transform (DFT) matrix, F�1 is its inverse, L is a matrix corresponding to the viscous term in
Fourier space, P is the penalization matrix and I is the identity matrix. Note that L and P are both diagonal matrices: the for-
mer has values �mjkj2 on its diagonal, with k being the wavenumbers; the diagonal elements of the latter are grid values of
vXðxÞ

g . However, the matrix A is full, as well as its DFT.
Note that (27) or (28) injected into (26) yields a first order scheme only, since the error accumulates over time. We can

obtain a second order scheme by following the same ideas. The time integral in (26) is approximated using the above men-
tioned AB2 scheme
unþ1
g ¼ eDtnþ1Aðun

g þ b10Q n þ b11eDtnAQ n�1Þ ð29Þ
and the exponentials are computed as
etA ¼ e�tP=2F�1etLFe�tP=2 þ Oðt3Þ: ð30Þ
The approximation (30) is easily proved by developing its both sides into Taylor series.
The convergence of this scheme is illustrated in Fig. 3. The penalization parameter g does not restrict stability of the

scheme. Moreover, it appears to be decoupled from the time step, i.e., its change has no distinct influence on the truncation



Fig. 3. Decay of the L1-error of (29) and (30) (ExP).

D. Kolomenskiy, K. Schneider / Journal of Computational Physics 228 (2009) 5687–5709 5693
error of the time-stepping scheme. Each curve exhibits a Dt2 decay and then a saturation when the time discretization error
becomes smaller than the penalization error.
3.2.3. Krylov method (KrM)
Krylov space methods are an alternative way to approximate the desired exponential (see [23,24]). Let u be a vector of N

components, real or complex-valued, and A be an N � N matrix. The following procedure gives an approximation of etAu to
order tK , where t is a real parameter (time) and K is a positive integer, which is typically smaller than N. The K-dimensional
Krylov subspace is defined as a linear span of vectors fu;Au; . . . ;AK�1ug. Its orthonormal basis fv1; v2; . . . ;vKg is generated by
the Arnoldi process [26]:

� w1 ¼ u
� For j ¼ 1;2; . . . ;K
v j ¼ wj=kwjk;

wjþ1 ¼ Av j �
Xj

l¼1

v lðv l;Av jÞ:
ð31Þ
This process results in a N � K matrix V whose columns are v1; . . . ;vK and a K � K matrix H ¼ VT AV , whose elements are
Hlj ¼ ðv l;Av jÞ and which is an upper Hessenberg matrix. We find then etH by a series approximation with scaling and squar-
ing as described in [24].

Finally, we compute
etA � VetHa1kuk; ð32Þ
where a1 is the first unit vector of length K.
The above procedure is used for computing the exponentials both of the linear and non-linear terms of (26). The convo-

lution integral arising from the non-linear term is evaluated using the previously described Adams–Bashforth discretization
(cf. Eqs. (15) and (16)), yielding a second order scheme. Note that this approach differs from the one reported in [23], where
quadrature formulae are used with exponential propagation being applied to each of the quadrature weights.

The Krylov subspace dimension K should be set to 3 or higher to achieve second order convergence of (29). Fig. 4 shows
two curves, corresponding to K ¼ 3 and K ¼ 20. Both of them indicate an error of the approximate solution decreasing with
Dt2, provided Dt is small enough. However, the former one is several orders of magnitude higher for coarse discretizations.

An adequate choice of K is a non-trivial task, since it affects the computational cost. In addition, it depends on the param-
eters of the problem.
3.2.4. Implicit integration of the penalization term (IIP)
So far we considered exponential propagation of the linear terms. It was derived under the assumption that the penaliza-

tion operator is linear and constant in time. This appears false in case of moving obstacles, as one can see from the penalization



Fig. 4. Decay of the L1-error of the Krylov method (KrM) for K ¼ 3 and K ¼ 20. Penalization parameter is g ¼ 1:6037 � 2�11=p.
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term in (4). Therefore it is worthwhile considering another approach which consists in an implicit integration of the penal-
ization term.

Such a scheme was proposed in [22]. When applied to (23) it reads
bunþ1
g ¼ F F�1 3e�mDtjkj2 bun

g �
3
2

e�2mDtjkj2 bun�1
g þ 1

3
e�3mDtjkj2 bun�2

g

��
þDtð3e�mDtjkj2 bQ n � 3e�2mDtjkj2 bQ n�1 þ e�3mDtjkj2 bQ n�2Þ

o 11
6
þ Dt

vXðtnþ1Þ
g

� �� 	
; ð33Þ
where bQ n ¼ Fð�un
g � @xun

gÞ; bun
g ¼ Fðun

gÞ and F stands for the Fourier transform. Note that in this scheme the time step Dt is
fixed.

This semi-implicit backward differentiation scheme of third order requires values of bu0
g; bu1

g and bu2
g for its startup. The first

is given by the initial condition at t ¼ 0: bu0
g ¼ Ffugðx;0Þg. To obtain the next two we use a second order semi-implicit Run-

ge–Kutta scheme
buI
g ¼ F F�1fe�mDtjkj2 ðbun

g þ Dt bQ nÞg= 1þ Dt
vXðtnþ1Þ

g

� �� 	
;

buII
g ¼ F F�1fe�mDtjkj2 ðbuI

g þ Dt bQ IÞg= 1þ Dt
vXðtnþ2Þ

g

� �� 	
;

bunþ1
g ¼ 1

2
ðe�mDtjkj2 bun

g � emDtjkj2 buII
gÞ þ buI

g þ Dt bQ I:

ð34Þ
In absence of penalization, it reduces to Heun’s scheme. Convergence of order higher than 2 is seen in Fig. 5, though the
curves do not reach the Dt3 slope before the penalization error lines up with the spatial discretization error.

For Burgers equation the scheme (33) requires no additional FFTs compared with an explicit treatment of the penalization
term.

3.3. Exponential propagation and implicit treatment of the penalization term. Extension to Navier–Stokes equations

Studying a simplified problem helped us to outline different possibilities to overcome a stability restriction inherent to
the penalization method. Apparently, time integration of the Navier–Stokes equations originates some extra points to be
discussed.

3.3.1. Vorticity–streamfunction form versus velocity–pressure form
Incompressible Navier–Stokes equations can be formulated in a number of ways, which are equivalent but whose prop-

erties differ from the numerical point of view. In particular, there is an essential difference between vorticity–streamfunction
‘x� w’ and velocity–pressure ‘u� p’ formulations for 2D flows, since the former requires less storage and less computation.



Fig. 5. Decay of the L1-error of (33) and (34) (IIP).
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This argument still holds for the penalized equations when an explicit scheme is used (e.g. the EIP method described in the
previous subsection). Meanwhile these too formulations imply two different forms of the penalization term:

� vX
g ðug � usÞ for the ‘u� p’ (4);

� r � vX
g ðug � usÞ

� �
for the ‘x� w’ (8).

It may seem that the latter formulation is disadvantageous since it contains derivatives of a discontinuous function. In
this connection let us note that the former one is a discontinuous function itself, and for spectral methods both will produce
Gibbs oscillations. Thereby it was explored in [9] that this truncation error affects neither flow dynamics, nor forces exerted
on solid bodies. Moreover, there exists a number of post-processing techniques to filter out oscillations (see also the related
discussion in [22]).

A more important difference lies in the fact that the penalization matrix corresponding to ‘u� p’ is diagonal in physical
space, while it is not true for ‘x� w’. As a consequence, generalization of the methods described in the previous subsection is
not straightforward. Namely, the IIP method fails for ‘x� w’, and approximations of matrix exponents (27) or (30) in the ExP
method do not hold. In this context a first order scheme for (14) may be obtained by generalization of (28).
bxnþ1 ¼ �ikxFe�Dt
vX
g F�1 ikx

jkj2
bxn � U1y

 !
� ikyFe�Dt

vX
g F�1 iky

jkj2
bxn þ U1x

 !
þ e�mDtjkj2 bxn � bxn þ Dte�mDtjkj2 bQ ð bxnÞ;

ð35Þ
where the non-linear term Q ¼ �u � rx is evaluated in physical space. Here we use the notation bxn ¼ bxðk; tnÞ and assume
us ¼ 0. This first order method requires an additional pair of FFTs compared with the explicit scheme. An analogous second
order scheme will use even more FFTs.

On the contrary, the KrM algorithm can be implemented without major modification for any formulation, since it only re-
quires a consequent application of the linear operator, whatever its form is. The choice of formulation may influence the appro-
priate choice of the Krylov subspace dimension K, but in both cases K should be set high enough to suppress coupling between g
and Dt. In this view the Krylov method represents a flexible, but computationally not very efficient tool, as stated in [23].

3.3.2. Imposing incompressibility
The ‘u� p’ formulation (4) is naturally convenient for implicit or exact integration of the penalization term, and for extending

the current approach to three spatial dimensions. The evaluation of the pressure gradient reduces to imposing the divergence
free conditionr � ug ¼ 0 on the velocity using, e.g. the fractional step method. In this connection it is important to note that the
penalization term in (4) is not divergence free, and makes hence its contribution to the pressure gradient.

3.3.3. Imposing the mean flow
In the ‘u� p’ formulation, a constant upstream flow can be imposed by setting the zero wavenumber mode of the velocity

to a desired value. This action is more subtle for the ‘x� w’ formulation, since it introduces a bias in the penalization term,
and then the corresponding particular solution should be incorporated.

Hence, KrM will yield the following time-stepping scheme:
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bxnþ1 ¼ bxn þ ðeDtnþ1A � IÞA�1ðA bxn þ bÞ þ eDtnþ1Aðb10
bQ ð bxnÞ þ b11eDtnA bQ ð bxn�1ÞÞ; ð36Þ
where
A ¼ ikxF
vX

g
F�1 ikx

jkj2
þ ikyF

vX

g
F�1 iky

jkj2
� mjkj2;

A bxn þ b ¼ ikxF
vX

g
F�1 ikx

jkj2
bxn � U1y

 !
þ ikyF

vX

g
F�1 iky

jkj2
bxn þ U1x

 !
� mjkj2 bxn;

ð37Þ
and the operators eDtnA; eDtnþ1A and ðeDtnþ1A � IÞA�1 are evaluated using an approximation in a Krylov subspace.

3.3.4. Moving obstacles
In the context of the penalization method ‘moving obstacle’ means that in Eq. (4)

� the mask function v depends on time;
� the term us is non-zero and, in general, also depends on time.

The first point has an important consequence for the ExP and KrM approaches, since they require the linear operator to be
constant in time. It can be shown that for time-dependent linear operators the accuracy of these methods reduces to first
order.

The IIP method does not invoke exact integration of the penalization term, and therefore it does not encounter this prob-
lem. For Eq. (4) we generalize the IIP method to obtain the following scheme
bunþ1
g ¼ F unþ1

s þ F�1 3e�mDtjkj2 bun
g �

3
2

e�2mDtjkj2 bun�1
g þ 1

3
e�3mDtjkj2 bun�2

g þ DtQ
� �

� 11
6

unþ1
s

� 	
11
6
þ Dt

vXðtnþ1Þ
g

� ��� 

;

ð38Þ
where Q ¼ 3e�mDtjkj2 bQ n � 3e�2mDtjkj2 bQ n�1 þ e�3mDtjkj2 bQ n�2 and Q ¼ �u � ru.
We should also mention in this connection that in principle the ‘moving obstacle’ problem can be reduced to the ‘fixed

obstacle’ problem by rewriting the governing equations in a moving reference frame. This approach, however, contradicts to
the essential ideas of this work and restricts capabilities of the proposed model (for instance, it is not quite suitable for two
moving obstacles).

3.3.5. Conclusions on time-stepping schemes
Above we listed numerous difficulties related to implicit and exact integration of the penalization term, and we found few

advantages with respect to the original explicit scheme described in Section 3.1. In our opinion, these approaches need fur-
ther development in order to be used for moving obstacle simulations without loosing efficiency. All the results presented in
the following are obtained using the explicit AB2 scheme.

4. Moving obstacles: time-dependent penalization

An attractive feature of the volume penalization method is that it potentially offers a capability of moving and deforming
solid obstacles while keeping unchanged the computational mesh. To do this in practice, we need to take care of the time-
dependent penalization term.

Note that in (8) both the obstacle penalization mask vXðx; tÞ and the velocity us depend on time and on the spatial coor-
dinate. As long as the obstacle is rigid, they are fully described by the coordinates of the obstacle’s center of gravity (c.g.)
xcgðtÞ ¼ ðxcgðtÞ; ycgðtÞÞ, its translational velocity _xcgðtÞ, the angle of inclination of the obstacle acgðtÞ, its rotational velocity
_acgðtÞ, and the initial mask function vX at t ¼ 0:
us ¼ ðusx;usyÞ;
where

usxðx; tÞ ¼ _xcgðtÞ � _acgðtÞ � ðy� ycgðtÞÞ;

usyðx; tÞ ¼ _ycgðtÞ þ _acgðtÞ � ðx� xcgðtÞÞ;

ð39Þ

vXðx; tÞ ¼ vXðx0; 0Þ;
where

x0 ¼ ðx0; y0Þ;
x0 ¼ ðx� xcgðtÞÞ cos acgðtÞ þ ðy� ycgðtÞÞ sinacgðtÞ þ xcgð0Þ;
y0 ¼ �ðx� xcgðtÞÞ sin acgðtÞ þ ðy� ycgðtÞÞ cosacgðtÞ þ ycgð0Þ;

ð40Þ



Fig. 6. Computational domain of a moving cylinder.

Fig. 7. Drag of a moving cylinder. Penalization mask is translated in physical space.
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The numerical solution of (8) and (9) will require a suitable discretization of (39) and (40) and, consequently, two-dimen-
sional interpolation of the mask function vX.

4.1. Discretization in physical space

We first imagine an obstacle moving along the x-axis (see Fig. 6). At the time instant t1 its center of gravity is translated
from its initial position ðx0; y0Þ to the point ðx1; y0Þ. The initial mask function vXðx; t ¼ 0Þ is given at the grid points. Then
we can obviously approximate vXðx; t1Þ by shifting the elements of the initial mask matrix by Ndx cells along x-direction,
with
Ndx ¼moduloð½ðx1 � x0Þ=Dx�;NxÞ; ð41Þ
where Nx is the number of grid points in x and Dx is the grid step along x. The penalization velocity field us is simply given by
usðx; tÞ ¼ ðusx; 0Þ ð42Þ
for all x ¼ ðx; yÞ 2 ½0; Lx� � ½0; Ly�.
Hereafter this approach is called ‘moving penalization mask in physical space’. In order to verify its validity, let us

consider a cylinder impulsively starting and moving in a fluid at rest with constant speed usx ¼ 1 along the x-axis. Ideally,
hydrodynamic forces must be invariant to the Galilean change of reference frame. Fig. 7 displays the evolution of the
drag coefficient, computed in such simulations for three different levels of spatial resolution. The domain size is Lx � Ly ¼
16� 4, the diameter of the cylinder D ¼ 1, the viscosity m ¼ 10�2 and the penalization parameter g ¼ 10�3. The drag
of a fixed cylinder in a uniform flow is plotted for reference. These curves reveal a problem of the present numerical
method: oscillations of the hydrodynamic forces. With an increase in resolution they diminish but still remain unaccept-
able.
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The origin of these oscillations can be explained as follows. The volume penalization method implies that the obstacle is
slightly permeable, and the whole domain is occupied by the fluid. A vortical boundary layer is formed both outside and in-
side of the body. Let us consider a solid body which is fixed, and the fluid flowing around it. At each time step the boundary
layer tends to be advected inside the body within a distance proportional to Dt, the time step. For numerical stability this
distance should be smaller (and in practice much smaller) than the spatial grid sizes Dx, Dy. On the contrary, when the body
moves in a fluid at rest, using the above method it can only be translated by an integer number of grid points, thus violating
the CFL condition.

In the next subsection we discuss a way to simulate ‘smoother’ motion of obstacles and to avoid oscillations of hydrody-
namic forces caused by the mentioned jerky motion.

4.2. Discretization in Fourier space

The aim of this subsection is to find a way of translating the obstacles by an increment as small as desired, and not limited
by the spatial grid resolution. This can be done basing on the fact that in our model the mask function is approximated by a
smooth periodic function given by a finite number of Fourier coefficients. So the shift of vXðx; tÞ in physical space corre-
sponds to multiplication of its Fourier transform by a complex exponential factor. We consider again an obstacle moving
along the x-axis with a constant speed V, so that after a time dt its displacement will be dx ¼ Vdt. The corresponding mask
function will be
vXðx; tÞ ¼ vX0ðx� dxÞ; ð43Þ
where vX0ðxÞ is the initial mask function given at t ¼ 0. Performing a Fourier transform of (43) in x we obtain
v̂Xðk; tÞ ¼ e�ikdxbvX0ðkÞ; ð44Þ
where k is the wavenumber.
A similar relation may be used to approximate the mask function vXðxi; tÞ at discrete points xi; i ¼ 1; . . . ;N and t > 0, from

the discrete Fourier coefficients of the initial mask at t ¼ 0. In this case the wavenumbers k are discrete and bounded, and
initially at t ¼ 0, the mask function is given by its grid point values XX0 ¼ vX0ðxiÞ. So we obtain an expression to compute the
discrete mask function XX
XX ¼ F�1ðe�ikdxn � FðXX0ÞÞ; ð45Þ
with dxn ¼ Vtn.
By construction this approximation converges in L2 to (43) with increasing number of modes taken into consideration.
The discussed algorithm has been applied to the moving cylinder test case from the previous subsection. Fig. 8 shows the

evolution of drag in this case, and should be compared with Fig. 7. Oscillations are still present, but their amplitude is much
smaller than observed previously in the case of translation in physical space. We can also see convergence of drag with
Fig. 8. Drag of a moving cylinder. Translation is modelled by changing the Fourier coefficients of the mask function.



Fig. 9. Drag of fixed and moving cylinders modelled with a smooth mask function.
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increasing resolution, but the limit seems to differ slightly from the value corresponding to a fixed cylinder. The latter fact
may be explained by the Gibbs oscillations of the mask function, which are not present in the fixed cylinder case (even if the
vorticity fields exhibit some small oscillations in both cases).

Oscillations disappear when using a smooth mask function rather than a discontinuous one, as displayed in Fig. 9. There-
fore we can conclude that smoothing, i.e., constructing a smooth mask function from the initial discontinuous mask function,
is important for the present moving obstacles model. This can be done by solving a heat equation with the discontinuous
mask function taken as an initial condition. Details of this process are described in Appendix A. A permeable layer which
is generated around the obstacle can be interpreted as wall roughness, according to [9].

Noteworthily, the two curves in Fig. 9 are not exactly identical even for very smooth mask functions. This is due to dif-
ferent time-stepping truncation errors in these two cases. The results shown in Fig. 9 are obtained with the CFL number
C ¼ 0:01, which yielded Dt � 10�4. For Dt ¼ 10�3 the difference increases to 2%.

The discussed approach of modelling motion of an obstacle by manipulating its mask function in Fourier space can be
generalized to perform arbitrary motion of a solid. In 2D, we need to shift the mask function by distances dx and dy along
x and y respectively, and rotate it about a given point (the solid c.g.) in the xy-plane by an angle dh.

Computational costs of this Fourier interpolation can be significant. At this point it is useful to remark that often, and typ-
ically when external flows are considered, the obstacles are several times smaller than the computational domain. Thus the
Fourier interpolation can be performed at little cost within a small box bounding the obstacle, and then this box is shifted by
an integer number of grid points, as described in the previous subsection.
4.3. Rotation and arbitrary two-dimensional motion

Rotation, just like translation, requires the values of the mask function to be interpolated between the grid points. The
difference is that rotation is a 2D operation. Nevertheless, it can be decomposed into a sequence of 1D transformations along
x and y axes. These decompositions are well known in image processing. We adopt the three-pass rotation, which is both
easy-to-implement and efficient [11]. It makes use of the rotation matrix factorization:
RðhÞ ¼
cos h � sin h

sin h cos h

" #
¼

1 � tanðh=2Þ
0 1

" #
1 0

sin h 1

" #
1 � tanðh=2Þ
0 1

" #
; ð46Þ
which decomposes the rotation by an angle h into skewing in the x and y directions. Each row (column) is translated by an
offset dx ¼ �y tanðh=2Þðdy ¼ x sinðhÞÞ that is proportional to its vertical (horizontal) coordinate.

The above decomposition can be used for h 2� � p;p½. For h outside of this interval one can decompose it as
h ¼ h1 þ np; ð47Þ
with n 2 N and h1 2� � p;p½, and mirror the mask function instead of rotating it at np. The latter corresponds to taking the
complex conjugate in Fourier space.

Combining the described translation and rotation we obtain Algorithm 1 to compute the discretized mask function cor-
responding to a solid obstacle in arbitrary 2D motion.

It is worth mentioning an alternative algorithm that has been developed for the same problem of arbitrary solid motion,
and requires only one pair of FFT in each direction. The algorithm is based on an approximate factorization of the rotation
matrix
RðhÞ ¼
1 �h

0 1

� 	
1 0
h 1

� 	
þ Oðh2Þ ð48Þ
and yields a first order scheme when applied to a small increment of the rotation angle. Nonetheless, all of the present re-
sults in this paper are obtained with the exact factorization (46), for the sake of accuracy.
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Algorithm 1. Arbitrary 2D motion of the penalization mask function

Require: Coordinates of the obstacle x2 ¼ xcgðt2Þ; y2 ¼ ycgðt2Þ; a2 ¼ acgðt2Þ at the current time instant t2, and x0 ¼ xcgð0Þ;
y0 ¼ ycgð0Þ; a0 ¼ acgð0Þ at the initial time t ¼ 0, as well as the initial penalization mask matrix X0 containing the
grid point values of the penalization mask function vXðx;0Þ. The fluid domain occupies a rectangle with coordinates
½0; Lx� � ½0; Ly�.

Step 1: Find h1 satisfying (47).
Step 2: Perform an FFT of X0 in x-direction. Multiply the result by
e�ikxðLx=2�x0Þ

(translation of c.g. from x0 to the center of domain along x). If cosðhÞ < 0, perform complex conjugate (mirror about
y-axis). Then multiply by

e�ikxðy�y0Þ tanðh1=2Þ

(shear along x-direction, ‘‘–” sign corresponds to the case when cosðhÞ < 0). Perform an inverse FFT in x-direction.

Step 3: Perform an FFT of X0 in y-direction. Multiply the result by
e�ikyðLy=2�y0Þ

(translation of c.g. from y0 to the center of domain along y). If cosðhÞ < 0, perform complex conjugate (mirror about
x-axis). Then multiply by

e�ikyðx�Lx=2Þ sin h1

(shear along y-direction). Perform an inverse FFT in y-direction.

Step 4: Perform an FFT in x-direction. Multiply by
e�ikxðx2�Lx�ðy�Ly=2Þ tanðh1=2ÞÞ

(translation of c.g. from the center of domain to x2 and shear along x-direction). Perform an inverse FFT in x-
direction.
Step 5: Perform an FFT of X0 in y-direction. Multiply the result by
e�ikyðy2�Ly=2Þ

(translation of c.g. from the center of domain to y2). Perform an inverse FFT in y-direction.

Ensure: Discretized penalization mask X2 approximating vXðx; t2Þ at t2.

Example: To see Algorithm 1 working, let us consider an assembly of three plates with rectangular cross-section. Their
dimensions are 0:35� 0:05 in terms of the unit length. One end of each is located on a circle of radius 0.5, the other end is on
a circle of radius 0.15, and the angle between the plates equals 2p=3. The three plates are rotating as a single unit with an
angular velocity _acg ¼ p=2 (counter-clockwise) about an axis which is moving in the x-direction with a speed _xcg ¼ �1 (to the
left).

The domain dimensions are 6� 3 and the resolution is 2048� 1024. The Reynolds number based on the unit length and
speed is Re ¼ 500.

In Fig. 10, one can see four snapshots of the vorticity produced by the plates at four different time instants. The plates are
coloured in grey, the colour which corresponds to their constant angular velocity. One can see vortices shedding from the
edges of the plates. The strongest vortices are generated by a plate which is on the top, because it moves faster. Then they
collide with the next plate which is approaching, as it can be observed at t ¼ 2:3 or t ¼ 3:8.

Gibbs oscillations are not present, due to smoothing of the mask function. It should be noted that this procedure slightly
changes the edge of the plate, so it will affect the properties (intensity, stability, etc.) of the vortex shedding (see [10] on the
effect of the edge geometry in this kind of numerical simulations).

Fig. 11 displays the resultant instantaneous forces and moment exercised by the plates, where positive y direction is up-
wards, positive x is to the right and positive moment is counter-clockwise. In spite of the complexity of the flow, there are no
spurious oscillations of the hydrodynamic forces, and this is the essential conclusion of the present example.

In the present section we have dealt with the problem of modelling the flow around solid abstacles in arbitrary prescribed
2D motion. Using the algorithm based on Fourier transforms of the obstacle mask function we attain a smooth evolution of
its hydrodynamic forces. The algorithm is relatively straightforward and easy-to-implement. It requires eight one-dimen-
sional FFTs in a rectangular sub-domain which bounds the solid obstacle.

4.4. Couette flow between cylinders

Our main motivation in this subsection is to show the validity of the present model when the obstacles are rotating. We
consider two co-axial cylinders, having radii R1;R2ðR1 < R2Þ, and rotating with angular velocities X1;X2. There exists an ana-
lytical solution of the Navier–Stokes equations for a steady flow between the cylinders (e.g. see [27]):



Fig. 10. Plots of vorticity produced by the moving plates assembly at subsequent time instants.

Fig. 11. Forces and moment of the moving plates.
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uðrÞ ¼ X2R2
2 �X1R2

1

R2
2 � R2

1

r þ ðX1 �X2ÞR2
1R2

2

R2
2 � R2

1

1
r
; ð49Þ
where u is the tangential component of the velocity, and the other components are zero.
For our numerical tests we set R1 ¼ 0:4;R2 ¼ 1:0;X1 ¼ 1:25;X2 ¼ 0. The fluid viscosity, although not present in (49), is

important for the numerical solution. Here it equals m ¼ 0:1. The domain is ½�1:1;1:1� � ½�1:1;1:1�, hence the mask function
is
vXðxÞ ¼
0 for R2

1 < x2 þ y2 < R2
2;

1 elsewhere:

(
ð50Þ
Since the mask function does not change in time, the interpolation described above is not applied for this test. However,
the penalization velocity us ¼ ð�X1y;X1xÞ is non-zero, since it models the non-homogeneous Dirichlet boundary condition
for the fluid velocity. This makes a difference with respect to the fixed obstacle case. The penalization parameter is set to
g ¼ 10�5, so that the penalization error is expected to be smaller then those appearing from the discretization.

Fig. 12 shows a cut of the azimuthal velocity for x 2 ½0;1:1� at y ¼ 0. The numerical solution is computed with N2 ¼ 2562

grid points and corresponds to time t ¼ 6, when the steady-state is well established (for t > 6 the velocity change is less then
10�3). It is practically equal to us within the solid domain x 2 ½0;0:4�

S
½1;1:1�. Within the fluid domain x 2�0:4;1½ it is close to

the exact solution, but a difference is visible, which has its maximum near the edge of the inner cylinder.
Fig. 13 displays the L2-error between the approximate solution and the exact one as a function of the number of grid

points, i.e., for decreasing grid size. Simulations with and without smoothing of the mask function are compared. Both curves
indicate first to second order of convergence. The smooth mask function results in a monotonous error decay, which is not
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Fig. 12. Couette flow between cylinders: cuts of the azimuthal velocity at y ¼ 0.

Fig. 13. L2-error decay in the Couette flow simulations.
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the case with the discontinuous mask. These oscillations arise from the approximation of the interface with a cartesian grid
(cf. the related discusion in [28]). Meanwhile, smoothing also increases the error.

The first to second order of convergence of our numerical method is consistent with the C1ðXÞ continuity of the penalized
velocity through the fluid–solid interface. Higher order convergence of spectral approximation can be recovered by applying
post-processing techniques [22,35].

We conclude that the volume penalization method is able to model rotating obstacles, and the numerical solution con-
verges to the exact one. Smoothing of the mask function, though optional, helps to avoid numerical oscillations of the result.

4.5. Flapping wings

The penalized momentum Eq. (4) can be naturally generalized for the case of multiple moving obstacles Xsj; j ¼ 1 . . . nobst .
In this case it is convenient to rewrite the penalization term as
Xnobst

j¼1

vXj

g
ðug � usjÞ; ð51Þ
where vXj
equals one inside of the jth obstacle, and zero elsewhere. The velocities usj are imposed by the solid body motion

of each of the obstacles.



Fig. 14. Sketch of the flapping wings.
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Numerical simulation of flows induced by multiple bodies moving with respect to each other is of particular interest to
applications in biological fluid mechanics. Flying insects, for instance, make use of mutual aerodynamic interactions and un-
steady motion of their wings to get better flight performance. An interesting and, in a certain sense, extreme case of these
wing–wing interactions is the Lighthill–Weis-Fogh mechanism [38], which involves a change of topology of the flow. Our
study of this flow will be reported elsewhere, but it would be appropriate to provide in this paper a kind of validation of
the present numerical method for a multi-body problem.

We make a comparison with numerical simulations performed by Miller and Peskin [37] using an immersed boundary
method. The wings are rectangular, with chord c ¼ 1 and thickness h ¼ 1=32 (see Fig. 14). The kinematics are given as func-
tions of dimensionless time s ¼ tVmax=c, where the representative velocity Vmax ¼ 1 is the maximum translational velocity.
The dimensionless time varies from 0 to smax ¼ 6. Initially the wings are parallel (‘clapped’), and we consider two cases, where
we vary the initial distance d0 between the hinges: d0 ¼ c=6 matches [37], and d0 ¼ c=32 is an interesting extreme case when
the wings are fully clapped. Between s ¼ 0 and s ¼ 1:74 the wings rotate in opposite directions with angular speed
XðsÞ ¼ 1
2

Xrot 1� cos 2ps� sturn

Dsrot

� �� 	
; ð52Þ
where Xrot ¼ 2DhVmax=Dsrotc;Dh ¼ p=4;Dsrot ¼ 1:74 and sturn ¼ 0. The translational motion begins at saccel ¼ 0:86. At
0:86 < s < 2:16 the wings accelerate. The wings start sweeping apart with increasing speed
VðsÞ ¼ 1
2

Vmax 1þ cos pþ ps� saccel

Dsaccel

� �� 	
; ð53Þ
where Dsaccel ¼ 1:3. After s ¼ 2:16 the speed remains constant and equal to Vmax. The kinematic viscosity, m ¼ 0:0078125,
yields the Reynolds number Re ¼ 128.

The periodic domain size in our simulations is Lx � Ly ¼ 10� 10, it is discretized with Nx � Ny ¼ 2048� 2048 grid points.
The permeability parameter is g ¼ 5 � 10�4. Smoothing of the mask function is applied (see Appendix A).

The flow field corresponding to the case d0 ¼ c=32 is visualized in Fig. 15 at three time instants. During ‘fling’, at s ¼ 0:6,
the fluid fills the opening space between the wings. The velocity is important near the leading edges (or tips), and reaches its
maximum on the symmetry axis. Two strong counter-rotating vortices are generated at the tips. Towards the hinge point the
velocity is decreasing. In the beginning of ‘sweep’, at s ¼ 1:2, the velocity of the flow past the just-separated trailing edges is
still small. At the same time, the leading edge vortices separate, and they detach as the wings move further apart at s ¼ 2.
One can also see newly-formed leading edge vortices and trailing edge vortices. It is worthwhile to mention that the numer-
ical solution is stable during the change of topology.

The lift coefficient per wing, calculated as cL ¼ 2FL=qV2c with q=1, is shown in Fig. 16. It has one peak during ‘fling’, an-
other one during the initiation of ‘sweep’, then it gradually decreases to a value which corresponds to an isolated plate. The
d0 ¼ c=32 case displays 20% higher lift peaks. Note the significant increase in lift during the initial portion of sweep, which is
due to stronger vorticity generation in the preceding fling motion. However, the lift drops more rapidly as the wings move
further apart. Near s ¼ 0 the lift coefficient vanishes in both simulations, as can be expected for finite-thickness wings. Time
evolution of the lift coefficient reported in [37] and obtained in our simulation with d0 ¼ c=6 is in reasonable agreement, the
discrepancy of 10% can be attributed to the differences in the numerical models.

5. Freely falling bodies

In this section we present a numerical model describing the motion of freely falling solid bodies.
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Fig. 16. Comparison of the lift coefficient obtained in the present simulations (solid and dashed lines) with the corresponding curve in [37] (dash-dot).
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5.1. Fluid–solid interaction model

The general problem of an arbitrary solid body falling through a viscous incompressible fluid requires to supplement the
equations of fluid mechanics by an appropriate description of the solid body dynamics. The latter is governed by Newton’s
2nd law, yielding in 2D
m
d2xcg

dt2 ¼ Fþ G; Jp
d2hcg

dt2 ¼ Mxcg ; ð54Þ
where m is the mass of the body, Jp is its moment of inertia, xcg is the position vector of its center of gravity (c.g.), hcg is the
angle of rotation of the body around c.g., F and Mxcg are, respectively, fluid force and torque, and G is the gravity force. Note
that the solid is assumed to be homogeneous, such that both gravity and hydrostatic forces are applied at the c.g., and we can
expel the gravitational source term from (1) by introducing the buoyancy-corrected gravity in (54).

Eqs. (6) and (7) provide the fluid forces and moment necessary to integrate the system of ODEs (54) governing the solid
body motion. Appropriate initial conditions close the problem.

To discretize the Eq. (54) we rewrite them as a system of six first order ODEs
dX=dt ¼ V ;

dV=dt ¼ F;

�
ð55Þ
where X ¼ ðxcg ; ycg ; hcgÞt ; F ¼ ðFxcg ; Fycg þ Gy;MÞt; Gy is the buoyancy-corrected gravity force and V contains the correspond-
ing velocities.

In the present computations we use a first order scheme:
Xnþ1 ¼ Xn þ VnDt þ 1
2 FnDt2;

Vnþ1 ¼ Vn þ FnDt;

(
ð56Þ
We observed that this scheme results in a slightly better accuracy compared with the first order explicit Euler discretization.



D. Kolomenskiy, K. Schneider / Journal of Computational Physics 228 (2009) 5687–5709 5705
The first order fluid–solid coupling seems to be adequate at this stage. Implementation of higher order schemes is seen as
a possible future improvement of the present code.

5.2. Sedimentation of a circular cylinder

To validate the fluid–solid interaction model we now consider the sedimentation of a solid cylinder body immersed in a
fluid, starting from rest and falling down perpendicularly to its longitudinal axis. For this simulation we have chosen the fol-
lowing dimensional parameters: fluid viscosity m ¼ 0:03926, fluid density q ¼ 1, solid density qs ¼ 2, acceleration of gravity
g ¼ 9:81 and the cylinder diameter D ¼ 1. The periodic domain is oriented vertically, having dimensions Lx � Ly ¼ 10� 40.
The spatial resolution is Nx � Ny ¼ 512� 2048 and the penalization parameter is g ¼ 10�3.

Assuming that the cylinder achieves its steady-state, the terminal velocity ut can be estimated from the balance between
drag and buoyancy-corrected weight,
Fig. 17.
indicate
cd
qu2

t

2
Dþ ðq� qsÞg

pD2

4
¼ 0; ð57Þ
where cd is the drag coefficient which can be determined as a function of Re ¼ utD=m for a cylinder in a steady inflow.
For the above choice of parameters we can judge that the cylinder will fall with a speed equal to ut ¼ 3:34 which corresponds

to Re ¼ 85. This is confirmed by the simulation results in Fig. 17, where the vertical velocity of the cylinder is shown as a function
of time. Indeed, after being released, the cylinder accelerates and achieves the indicated terminal speed. At the same time its
vortical wake develops, becomes unstable and forms a von Kármán vortex street, which makes the forces oscillate. The latter
results in slight deviations of the trajectory from a straight line, and the velocity also slightly oscillates around ut .

5.3. Falling leaves

In this subsection we present two numerical simulations of a falling leaf, showing different patterns of its behaviour. Fol-
lowing [13–15], we consider a plate with an elliptical cross-section. The problem admits three dimensionless parameters:

� the eccentricity of the ellipse e ¼ b=a,
� the Reynolds number Re ¼ 2uta=m,
� the dimensionless moment of inertia I	 ¼ bða2þb2Þqs

2a3q .

In the above, a and b are, respectively, the major and minor semi-axes of the ellipse, qs is its density, q and m are the den-
sity and the kinematic viscosity of the fluid, respectively, and ut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pbgðqs=q� 1Þ

p
is the terminal velocity estimated by bal-

ancing gravity, buoyancy and drag of a plate having the chord 2a and unit drag coefficient. In the first simulation we set
e ¼ 0:125;Re ¼ 1100 and I	 ¼ 0:17. The leaf is released from rest with an initial angle of 0.2 rad.

The following numerical parameters are used for both simulations in this subsection: the periodic domain size is
Lx � Ly ¼ 10� 20 chord lengths, L = 2a, the resolution is Nx � Ny ¼ 1024� 2048 and the penalization parameter is g ¼ 10�3.

From Fig. 18 one can see that after being released the leaf starts oscillating from side to side (fluttering) with increasing
amplitude, attaining increasingly higher angles at the turning points of its trajectory. After a while, this increase results in an
upside-down turn, and then the leaf continues rotating in the same direction and drifting sideways (tumbling). This behav-
Velocity of a falling cylinder starting from rest (solid line). Insets show its wake (vorticity field) at three distinct times. The horizontal dashed line
s the steady-state estimate.



Fig. 18. Trajectory of a falling leaf. Arrows mark the tumbling zone corresponding to the average velocities in Table 1. Dashed red lines indicate the periodic
box size.

Table 1
Averaged translational and angular velocities, and descent angle of the falling ellipse.

U (cm/s) V (cm/s) Xz (1/s) h (deg)

Andersen et al. [14] 15.6 �7.4 18.0 25.3
Jin and Xu [29] 15.3 �11.2 16.9 36.2
Present computation 11.3 �7.2 19.4 32.5

Fig. 19. Trajectory (left) and vorticity plots (right) of a fluttering leaf.
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iour is qualitatively similar to that obtained in [13,14], but in the latter the transition occurred just after one cycle of flut-
tering. Such an important feature as the center of gravity elevation near the cusp-like turning points, first reported in [13]
and attributed to the viscous effects, is clearly present in our simulation.
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To justify the fact that the accordance between the trajectory in Fig. 18 and the one presented in [13] is only qualitative,
but not point-to-point, we emphasize that the problem is very sensitive to perturbations. In this view, it is natural that two
very different numerical methods predict quantitatively different trajectories. For instance, Jin and Xu [29] explored the
same falling leaf using lattice Boltzmann simulations and did not observe the period-two structure reported in [14]. In addi-
tion, at longer times the present result is most probably affected by the boundary conditions. Although the tumbling regime
is stable enough to persist these perturbations, no periodic final state establishes.

Nonetheless, we can examine some integral quantities, such as average velocities of tumbling motion. Table 1 shows a
comparison of the horizontal U, vertical V and angular Xz mean velocities with the values presented in [14,29]. In the present
computation they are obtained by averaging through an interval marked on Fig. 18 and converted to the dimensional form.
The table also shows the descent angle, calculated as h ¼ arctanðjV=UjÞ. The agreement is reasonable, especially in view of
the relatively low resolution (about 51 points per chord) and the coarse penalization parameter ðg ¼ 10�3Þ. Simulations with
finer discretization and larger domains are anticipated.

An important feature of the 2D free fall is that it exhibits a number of distinct patterns, depending on the parameters of
the problem (see, e.g. [14,15]). In particular, the experiments [12] show that, at Re ¼ 3 � 103 . . . 4 � 104, a rectangular plate
either flutters or tumbles according to the similarity number

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=qL2

q
, where m is its mass per unit length and L is its chord.

We have seen in the above simulation an example when the fluttering motion diverges, and the leaf starts tumbling. In
the second simulation we show that lighter leaves tend to flutter rather than tumble. We decrease the density ratio twice,
leaving all the other dimensional properties unchanged, and thus setting I	 ¼ 0:085;Re ¼ 494. This yields

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=qL2

q
¼ 0:3626.

One can see in Fig. 19 that this leaf indeed flutters. Periodic motion establishes after two or three cycles of transient. In con-
trast, the behaviour of the vortical wake is rather complex: the detached boundary layer rolls up into intensive vortices,
which then pair and merge ðcf : the results of the inviscid model [30]).
6. Conclusions and perspectives

A numerical method has been developed for simulations of solid bodies moving through a viscous incompressible fluid. It
represents a further development of the technique presented in [4]. The 2D Navier–Stokes equations, written in the vorticity-
streamfunction formulation, are discretized using the Fourier pseudo-spectral scheme. Therewith, solid obstacles of arbitrary
shape can be taken into account using the volume penalization method.

Four distinct time discretization schemes have been implemented and assessed, which mainly differ in the integration of
the penalization term. The results indicate that the schemes based on implicit integration and exponential propagation of the
penalization term need further development in order to be used for moving obstacle simulations without loosing efficiency.
The explicit scheme has been kept in this work for its precision for a given computational cost.

The originality of the present work lies in the implementation of time-dependent volume penalization, which makes this
method capable of solving problems where the obstacle follows an arbitrary motion. Interpolation of a mask function in Fou-
rier space helps to avoid oscillations of hydrodynamic forces when the obstacle translates with respect to the grid. This ap-
proach has been generalized for the arbitrary 2D motion by factorization of rotation into a sequence of 1D operations.

Couette flow between cylinders has been considered. The volume penalization method is found able to model rotating
obstacles, and the numerical solution converges to the exact one. Smoothing of the mask function reduces numerical oscil-
lations, while the order of convergence remains first to second. Noteworthily, there exists a possibility to recover the higher
order of convergence by applying a post-processing technique [22,35]. We anticipate its implementation in our future work.

The penalization model has been extended to solve the problem of solid bodies falling through a fluid. An ODE system of
the solid body dynamics has been introduced and discretized with first order accuracy. Higher order schemes are to be
implemented in future.

The sedimentation of a cylinder has been considered. The terminal velocity achieved in the simulation agrees reasonably
well with the value predicted from the balance between drag and buoyancy-corrected weight. Different simulations of fall-
ing leaves (plates) have been performed. For the effective choice of numerical parameters, the results are in reasonable
agreement with the available data. Fluttering and tumbling regimes of the freely falling leaves have been explored, depend-
ing on the physical parameters. A detailed study is anticipated in future.

Generalization of the model to three spatial dimensions is envisaged. In that case we prefer the velocity–pressure formu-
lation, since the vorticity equation is no longer scalar-valued. In addition, this formulation would be more convenient for an
implicit integration of the penalization term. Incompressibility can be imposed using, e.g. fractional step method. Concerning
the moving obstacles, generalization of the algorithm described in Section 4 is straightforward, the sole difference is that
three translations and three rotations are required.
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Appendix A. Smoothing of the mask function

As it was mentioned in Section 4.2, smoothing of the mask function is required to avoid spurious oscillations of the hydro-
dynamic forces on moving obstacles. Another reason is the need for de-aliasing of the penalization term, since the product
vXðug � usÞ can contain modes which are not resolved by the grid.

A convenient way to smooth the mask function is to convolve it with a Gaussian filter [39],
bv ¼ expð�Csmthðk2
x=N2

x þ k2
y=N2

yÞÞbvsharp; ðA:1Þ
which can be seen as diffusing the initially discontinuous mask vsharp by applying several iterations of solving the heat equa-
tion. This procedure is straightforward with a spectral method, and the high-gradient region remains well localized in phys-
ical space and becomes localized in Fourier space. Our typical choice is Csmth ¼ 16.

Alternatively, the profiles in Fig. A.1 can be used to ‘‘smear out” the mask function, i.e., to impose a smooth transition from
0 to 1, which contains a given number of points in a normal direction to the boundary. However, this simpler approach is
limited to simple geometries.

Appendix B. Stability of explicit integration of the penalization term

As we mentioned in Section 3.1, the second order Adams–Bashforth time integration of the penalization term in the Na-
vier–Stokes equations implies a stability condition Dt < g. This condition is derived below from the linear stability analysis.

Let us consider Eq. (8) with r� f ¼ 0 and us ¼ 0, i.e.,
@txg þ ug � rxg � mr2xg þr�
vX

g
ug

� �
¼ 0; ðB:1Þ
where ug ¼ r?Wþ U1 and W satisfiesr2W ¼ xg. Inside the obstacle the penalized velocity ug is tending to zero with g (see
[34]), and the non-linear term of (B.1) is of higher order in g compared to the linear terms. Let us restrict our attention to a
particular case where the obstacle occupies the whole computational domain. The result obtained under this assumption
seems to hold in general. The vorticity equation (B.1) is then much simplified:
@txg � mr2xg þ
1
g
r� ug ¼ 0: ðB:2Þ
All spatial derivatives in (B.2) are evaluated with a Fourier collocation method, therefore a numerical approximation of
r� ug equals exactly xg. Then rewriting (B.2) in terms of its discrete Fourier modes yields
@t bxgðkÞ þ mjkj2 bxgðkÞ þ
1
g
bxgðkÞ ¼ 0: ðB:3Þ
Now let us apply the AB2 scheme with exact treatment of the diffusion term to solve this equation. This means that the
explicit time-stepping scheme is applied to the equation
@t
cW gðkÞ ¼ �

1
g
cW gðkÞ; ðB:4Þ
where cW gðkÞ ¼ emjkj2t bxgðkÞ. The linear operator on the right-hand side of (B.4) is simply a constant equal to �1=g, and the
stability condition of the AB2 scheme (see [6]) in this case is 0 P �Dt=g P �1, which yields Dt 6 g. By writing Dt < g we
exclude the neutrally stable case.
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